Licentiate thesis, comprehensive summary

Investigation of Architectures for Wireless Visual Sensor Nodes


No matching items found.

Research Areas

No matching items found.

Publication Details

Author list: IMRAN M, IMRAN M, IMRAN M

Publisher: Mid Sweden University

Place: Sundsvall

Publication year: 2011

ISBN: 978-91-86694-45-6


Wireless visual sensor network is an emerging field which has proveduseful in many applications, including industrial control and monitoring,surveillance, environmental monitoring, personal care and the virtual world.Traditional imaging systems used a wired link, centralized network, highprocessing capabilities, unlimited storage and power source. In manyapplications, the wired solution results in high installation and maintenancecosts. However, a wireless solution is the preferred choice as it offers lessmaintenance, infrastructure costs and greater scalability.The technological developments in image sensors, wirelesscommunication and processing platforms have paved the way for smartcamera networks usually referred to as Wireless Visual Sensor Networks(WVSNs). WVSNs consist of a number of Visual Sensor Nodes (VSNs)deployed over a large geographical area. The smart cameras can performcomplex vision tasks using limited resources such as batteries or alternativeenergy sources, embedded platforms, a wireless link and a small memory.Current research in WVSNs is focused on reducing the energyconsumption of the node so as to maximise the life of the VSN. To meet thischallenge, different software and hardware solutions are presented in theliterature for the implementation of VSNs.The focus in this thesis is on the exploration of energy efficientreconfigurable architectures for VSNs by partitioning vision tasks on software,hardware platforms and locality. For any application, some of the vision taskscan be performed on the sensor node after which data is sent over the wirelesslink to the server where the remaining vision tasks are performed. Similarly,at the VSN, vision tasks can be partitioned on software and the hardwareplatforms.In the thesis, all possible strategies are explored, by partitioning visiontasks on the sensor node and on the server. The energy consumption of thesensor node is evaluated for different strategies on software platform. It isobserved that performing some of the vision tasks on the sensor node andsending compressed images to the server where the remaining vision tasks areperformed, will have lower energy consumption.In order to achieve better performance and low power consumption,Field Programmable Gate Arrays (FPGAs) are introduced for theimplementation of the sensor node. The strategies with reasonable designtimes and costs are implemented on hardware-software platform. Based onthe implementation of the VSN on the FPGA together with micro-controller,the lifetime of the VSN is predicted using the measured energy values of theplatforms for different processing strategies. The implementation resultsprove our analysis that a VSN with such characteristics will result in a longerlife time.


No matching items found.


No matching items found.


No matching items found.