Other
Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets

Authors/Editors
No matching items found.


Research Areas
No matching items found.

Publication Details
Author list: Koptioug, Andrei
Publication year: 2018
Start page: 100
End page: 108
Number of pages: 9

Abstract

Additive manufacturing (AM) or 3D-printing started as a prototyping technique in plastic has succeeded in metals for life safety applications as airspace and medical implants production. Today having advantages in fabricating products of desired shape, geometry, lightweight structures and required mechanical properties, 3D-printing faces a new challenge - AM of permanent magnets (PM). 3D-printing significantly simplifies manufacturing of net-shape bonded magnets, simplifies the new phase magnets prototyping, and also enables efficient use of rare earth (RE) elements [1]. The major development nowadays is performed by AM of bonded Nd-Fe-B using different binders/polymers [1, 2]. 3D printing technologies of non-RE magnets are not so widely represented [3]. The AM of RE-free PM, such as Al-Ni-Co [4] and MnAl(C) [5], is also developed, because of their great benefit of being non-RE, presenting advantages of AM technology and sufficient magnetic properties. This work presents the state-of-the-art of 3D-printing of PM, including RE and RE-free, bonded and non-bonded magnets. Prospects of electron beam melting (EBM) of non-rare-earth MnAl(C) are shown.


Projects
No matching items found.

Keywords
No matching items found.

Documents
No matching items found.