Journal article
Likelihood analysis of phylogenetic networks using directed graphical models

Authors/Editors
No matching items found.


Research Areas
No matching items found.

Publication Details
Author list: Moulton, Vincent
Publication year: 2000
Start page: 875
End page: 881
Number of pages: 7
ISSN: 0737-4038
View additional information: View in Web of Science™

Abstract

A method for computing the likelihood of a set of sequences assuming a phylogenetic network as an evolutionary hypothesis is presented. The approach applies directed graphical models to sequence evolution on networks and is a natural generalization of earlier work by Felsenstein on evolutionary trees, including it as a special case. The likelihood computation involves several steps. First, the phylogenetic network is rooted to form a directed acyclic graph (DAG). Then, applying standard models for nucleotide/amino acid substitution, the DAG is converted into a Bayesian network from which the joint probability distribution involving all nodes of the network can be directly read. The joint probability is explicitly dependent on branch lengths and on recombination parameters (prior probability of a parent sequence). The likelihood of the data assuming no knowledge of hidden nodes is obtained by marginalization, i.e., by summing over all combinations of unknown states. As the number of terms increases exponentially with the number of hidden nodes, a Markov chain Monte Carlo procedure (Gibbs sampling) is used to accurately approximate the likelihood by summing over the most important states only. Investigating a human T-cell lymphotropic virus (HTLV) data set and optimizing both branch lengths and recombination parameters, we find that the likelihood of a corresponding phylogenetic network outperforms a set of competing evolutionary trees. In general, except for the case of a tree, the likelihood of a network will be dependent on the choice of the root, even if a reversible model of substitution is applied. Thus, the method also provides a way in which to root a phylogenetic network by choosing a node that produces a most likely network.


Projects
No matching items found.

Keywords
No matching items found.

Documents
No matching items found.