Doctoral thesis, comprehensive summary

Applications of embedded sensors in loader crane positioning and rotor RPM measurement


No matching items found.

Research Areas

No matching items found.

Publication Details

Author list: Cheng, Peng

Publisher: Mid Sweden University

Place: Sundsvall

Publication year: 2011

ISBN: 978-91-86694-56-2


In this thesis, two novel applications involving embedded sensors arestudied, one dealing with loader crane positioning and the other involving rotorRevolutions Per Minute (RPM) measurement. The thesis presents a generalintroduction to the embedded sensor, its architecture and its use in mechanicalindustry, and provides the reader with an overview of conventional sensortechnologies within the fields of angle sensors and angular speed sensors, coveringtheir working principles, features, advantages and disadvantages and typicalapplications. The particular problems associated with the use of conventionalsensors in both loader crane positioning and rotor RPM measurement aredescribed and these problems provided the motivation for the designs of theembedded sensor systems developed in this thesis.In the case of the loader crane positioning, the origins of the project and thespecial requirements of the application are described in detail. In addition, apreliminary study is conducted in relation to the idea of a contactless joint angularsensor using MEMS inertial sensors in which four different methods, namely, theCommon-Mode-Rejection with Gyro Integration (CMRGI), Common-Mode-Rejection (CMR), Common-Mode-Rejection with Gyro Differentiation (CMRGD)and Distributed Common-Mode-Rejection (DCMR), are conceived, modeled andtested on a custom-designed prototype experimental setup. The results gatheredfrom these four methods are compared and analyzed in order to identify thedifferences in their performances. The methods, which proved to be suitable, arethen further tested using the prototype sensor setup on a loader crane and theperformance results are analyzed in order to make a decision in relation to the twomost suitable methods for the application of the loader crane positioning. Theresults suggested that the two most suitable were the CMRGD and the DCMR. Thepractical design issues relating to this sensor system are highlighted andsuggestions are made in the study. Additionally, possible future work for thisproject is also covered.In the first case for the rotor RPM measurement, the thesis presents themodeling and simulation of the stator-free RPM sensor idea using the Monte Carlomethod, which demonstrated the special features and performance of this sensor.The design aspects of the prototype sensor are described in detail and theprototype is tested on an experimental setup. The conclusions for the stator-freeRPM sensor are then made from the analysis of the experimental results and futurework in relation to this sensor is also proposed.In the second case of the rotor RPM measurement, the thesis presentsanother idea involving the laser mouse RPM sensor and the main focus of thestudy is on the performance characterization of the laser mouse sensor and theverification of the RPM sensor idea. Experiments are conducted using the test setup and results are gathered and analyzed and conclusions are drawn.Possibilities in relation to future work for this laser mouse RPM sensor are alsoprovided.The summary and the conclusion form the final chapter of the thesis andseveral important aspects of the designs relating to both the loader cranepositioning project and the rotor RPM measurement project are discussed.


No matching items found.


No matching items found.


No matching items found.