Other

Hydrogel-based pH-sensors : Development and characterisation of optical and electrical pH sensors based on stimuli-responsive hydrogels

Authors/Editors

Information saknas



Research Areas

Information saknas


Publication Details

Författarlista: Hammarling, Krister

Författare: Mid Sweden University

Ort: Sundsvall

Publikationsår: 2019

ISBN: 978-91-88527-93-6


Sammanfattning

The ability to measure the chemical parameter pH is of high importance in many areas. With new government regulations and evolving markets, there is a strong motivation for improving such measurements and conducting research on new types of pH sensors and sensor materials. Stimuli-responsive hydrogels (a group of polymers) have attracted a lot of attention in recent decades, due to their ability to be customized to suit many applications. One specific area where they have attracted attention is pH sensor technology.

Two stimuli-responsive hydrogels are used in this thesis. One is a non-toxic hydrogel, 1,4-acryl-terminated oligo(beta-amino esters) (1,4-AOBAE). Although it was previously used in drug- and DNA- delivery systems, it has not (to my knowledge) been used in a sensor configuration, and thus it is interesting to study. The second hydrogel, 1,3-acryl-terminated oligo(beta-amino esters) (1,3-AOBAE), is an improved variant of the first one. This improved hydrogel was synthesized because the original hydrogel crystallizes at room temperature, which meant that it was not optimal for various coating techniques. This hydrogel was characterized and verified for pH responsivity in two sensor configurations: electrical and optical. Designing a hydrogel for a specific application can be a complex procedure due to the many synthesizing parameters. For example, increasing a hydrogels mechanical strength by introducing a higher degree of cross linking, leads to a smaller mesh size, which in turn leads to a lower diffusion rate and less solution absorption. The two hydrogels examined in this thesis respond to pH changes by absorbing or desorbing water; this change in the hydrogels water content also changes its effective refractive index and permittivity. These changes can be measured using optical or electrical sensor systems. Three types of sensor systems were used in this thesis to verify the hydrogels pH response and to ensure that they are suitable for use in thin-film techniques on various substrates (e.g. glass and plastic). The experimental results prove that these hydrogels are suitable for use in both electrical and optical sensor configurations. For electrical systems, a pH range of approximately 3-12 was achieved, and for optical, the range was approximately 2-12. These ranges can likely be improved, as the sensor film delaminated from the substrate at low pHs due to adhesion problems and as measurements above 12 were not conducted.

The findings of this thesis could, after more research, have strong implications for the development of improved pH-sensor configurations, especially for medical and healthcare applications and in environmental monitoring.

;

Möjligheten att mäta den kemiska parametern pH är av stor betydelse inom många områden. Nya regler från myndigheter och tillväxtmarknader gör att det finns det en stark motivation för förbättring av och forskning om nya typer av pH-sensorer och sensormaterial. Stimuli-responsiva hydrogeler (en grupp polymerer) är ett material som under de senaste årtiondena uppmärksammats på grund av deras förmåga att skräddarsys för att passa många olika applikationer. Ett specifikt område där de har uppmärksammats är i pH-sensorteknik.

I arbetet presenterat i denna avhandling har två stimuli-responsiva hydrogeler använts. Dessa båda icke-toxiska hydrogeler har tidigare använts i olika läkemedel samt till DNA leverans system, men däremot inte till pH sensorer, vilket har gjorts i detta arbete. Hydrogelerna har använts för att konstruera och tillverka optiska pH sensorer baserade på fiberoptik samt elektriska sensorer med kapacitiv utläsning. Att syntetisera en hydrogel för en specifik applikation kan vara komplicerat, vilket beror på de många syntetiseringsparametrar som är inblandade vid tillverkning. Till exempel, leder införande av en högre tvärbindningsgrad till ökad mekaniska styrka hos hydrogelen, men också till en mindre maskstorlek, vilket i sin tur leder till en minskning av diffusions-hastigheten och absorption av lösningen. De två hydrogeler som undersöks i denna avhandling reagerar på pH-förändringar genom att absorbera eller desorbera vatten. Förändring av vattenhalt i hydrogelen ändrar också dess effektiva brytningsindex och permittivitet. Dessa ändringar av brytningsindex eller permittivitet kan med fördel mätas med optiska eller elektriska sensorsystem. Tre olika typer av sensorsystem har använts för att verifiera hydrogelens pH-respons och och dess lämplighet att användas i tunnfilms-teknik på olika substrat (glas och plast). Experimentella undersökningar har visat att de undersökta hydrogelerna är lämpliga att användas i både elektriska och optiska sensor konfigurationer. Det elektriska systemet visade sig känsligt för pH förändringar mellan ~3-12, och optiska system mellan ~2-12. Det observerades att låga pH värden ger en så stor volymsförändring av polymeren att denna då släpper ifrån underlaget. Det är därför troligt att mätintervallet kan utökas om vidhäftningen mellan polymer och underlag kan förbättras.

Resultaten från denna avhandling kan med ytterligare forskning ha en stark inverkan på utvecklingen av förbättrade pH-sensor konfigurationer, särskilt inom medicinska- och hälsovårds-applikationer samt miljöövervakning.


Projects

Information saknas


Keywords

Information saknas


Documents

Information saknas


Senast uppdaterat 2019-21-03 vid 04:01