Journal article review
Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments

Authors/Editors
No matching items found.


Research Areas
No matching items found.

Publication Details
Author list: Pocock, Tessa
Publication year: 2006
Start page: 222
End page: 252
Number of pages: 31
ISSN: 1092-2172
View additional information: View in Web of Science™

Abstract

Persistently cold environments constitute one of our worlds largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.


Projects
No matching items found.

Keywords
No matching items found.

Documents
No matching items found.