Conference paper

Machine Learning-Aided Classification of LoS/NLoS Radio Links in Industrial IoT

Authors/Editors

No matching items found.



Research Areas

No matching items found.


Publication Details

Author list: Grimaldi, Simone

Publisher: IEEE

Publication year: 2020

ISBN: 978-1-7281-5297-4

DOI: http://dx.doi.org/10.1109/WFCS47810.2020.9114409


Abstract

Wireless sensors and actuators networks are an essential element to realize industrial IoT (IIoT) systems, yet their diffusion is hampered by the complexity of ensuring reliable communication in industrial environments.A significant problem with that respect is the unpredictable fluctuation of a radio-link between the line-of-sight (LoS) and the non-line-of-sight (NLoS) state due to time-varying environments.The impact of link-state over reception performance, suggests that link-state variations should be monitored at run-time, enabling dynamic adaptation of the transmission scheme on a link-basis to safeguard QoS.Starting from the assumption that accurate channel-sounding is unsuitable for low-complexity IIoT devices, we investigate the feasibility of channel-state identification for platforms with limited sensing capabilities. In this context, we evaluate the performance of different supervised-learning algorithms with variable complexity for the inference of the radio-link state.Our approach provides fast link-diagnostics by performing online classification based on a single received packet. Furthermore, the method takes into account the effects of limited sampling frequency, bit-depth, and moving average filtering, which are typical to hardware-constrained platforms.The results of an experimental campaign in both industrial and office environments show promising classification accuracy of LoS/NLoS radio links. Additional tests indicate that the proposed method retains good performance even with low-resolution RSSI-samples available in low-cost WSN nodes, which facilitates its adoption in real IIoT networks.


Projects

No matching items found.


Keywords

No matching items found.


Documents

No matching items found.