Doctoral thesis, comprehensive summary

Utilization of cellulosic biomass towards sustainable chemicals and novel biomaterials

Authors/Editors

No matching items found.



Research Areas

No matching items found.


Publication Details

Author list: Yang, Jiayi

Publisher: Mid Sweden University

Place: Sundsvall

Publication year: 2020

Number of pages: 78

ISBN: 978-91-88947-43-7


Abstract

It is predicted by the United Nations that by year 2030 the world will need at least 50 percent more food, 45 percent more energy and 30 percent more water. The emissions of carbon dioxide from combustion of fossil fuels and waste are also increasing. At the same time, the demand for natural resources has never been higher and the planet is under unprecedented stress. This increasing awareness and concerns also drive and accelerate the research to facilitate switching the fossil-dependent economy to biobased economy. In this premise, forest industry plays a significant role, from leading the sustainable development to providing more materials to meeting the expanding demand. Moreover, the forest industry is a crucial part of the solution to global warming. The utilization of forest product has a long history, and the efforts of converting the biomass into value-added products or innovative applications have never been more stimulated than now. This thesis presents some examples of the exploration of lignocellulosic biomass based on the fractionation of lipophilic extractives and utilization of non-derivatized cellulose in novel materials.

In the first part of thesis, the biorefinery of thermo-mechanical pulping (TMP) process water for lipophilic extractives was investigated as a way to extract the dissolved and colloidal substance (DCS). It was found that induced air flotation (IAF) combined with the foaming agent dodecyl trimethylammonium chloride (DoTAC) can efficiently remove the unwanted lipophilic extractives (Paper I) and retain valuable hemicelluloses (Paper II) in the TMP process water. By applying 80 ppm of DoTAC at a pH of 3.5 and 50 °C with induced air flotation, 94% of the lipophilic extractives were refined from the process water. The efficient biorefining of lipophilic extractives not only enabled the purification of TMP process water, but also facilitate the selective harvesting of hemicelluloses with very low impurities.

In the second part of the work, non-derivatized cellulose (sulfite pulp) dissolved in LiOH/urea was used as substrate to fabricate spherical nanocomposite particles (Paper III), pH-responsive nanocomposite films (Paper IV) and crosslinked cellulose hydrogel (Paper V), respectively. The cellulose-chitosan nanocomposite particles were prepared in three different ways: instantly by dripping alkaline cellulose solution into dissolved chitosan in diluted acetic acid, and by mixing and emulsifying the biopolymer solutions to a water-in-oil emulsion, with or without addition of a crosslinking agent. Spherical cellulose-chitosan nanocomposite particles in the size from millimeter to micrometers were successfully prepared. It was demonstrated that some properties of the spherical particles, for example, morphology and size distribution, could be tuned by choosing between the different routes of preparation. In a different application of LiOH/urea dissolved cellulose, in the form of cellulose-chitosan nanocomposite films with pH-responsive swelling, were shown in the thesis. The nanocomposite film with 75% chitosan content exhibited maximum swelling ratio of 1500% and weight loss of chitosan of 55 wt% after 12 hours at pH 3. The utilization of the non-derivatized cellulose continued with cross-linking the macromolecules with methylenebisacrylamide (MBA) to form a robust hydrogel with superior water absorption properties. The cellulose hydrogel cured at 60 °C for 30 minutes, with a [MBA]/[glucose] molar ratio of 1.05, exhibited the highest water swelling capacity absorbing ca. 220 g H2O/g dry weight. This innovative procedure based on the direct dissolution of unmodified cellulose in LiOH/urea followed by MBA cross-linking provides a simple and fast approach to prepare chemically cross-linked cellulose hydrogels of high molecular weight with superior water uptake capacity.

;

I en uppskattning gjord av FN så kommer världens befolkning år 2030 att förbruka minst 50 % mer mat, 45 % mer energi och 30 % mer vatten än idag. Koldioxidutsläppen från förbränning av icke-förnybara bränslen och material fortsätter också att öka. Samtidigt är uttaget av jordens resurser redan nu rekordhögt. Den ökande medvetenheten accelererar forskningen för att kunna underlätta en övergång från oljebaserad till en biobaserad ekonomi. Här spelar skogsindustri en signifikant roll för att underlätta för en hållbar utveckling och tillgodose ett ökande behov av material. Samtidigt är skogsindustrin en viktig spelare för att minska den globala uppvärmningen. Vår användning av produkter från skogen har en lång historia och insatserna för att konvertera skogsråvara till värdefulla och innovativa produkter har aldrig varit större än just nu. I den här avhandlingen presenteras några exempel från forskningen på hur skogsbiomassa kan upparbetas och hur omodifierad cellulosa kan användas på olika sätt i nya materialapplikationer.

I avhandlingens första del så behandlas hur processvatten från termomekanisk massa (TMP) kan renas från lipofila substanser genom separation av löst och kolloidal substans. Resultaten visar att flotation med skumbildaren dodecyltrimetylammoniumklorid (DoTAC) effektivt kan avlägsna de lipofila substanserna (Paper I) och samtidigt bevara hemicellulosan (Paper II) i TMP processvattnet. Genom att tillsätta 80 ppm DoTAC vid pH 3,5 och 50 °C, kunde 94 % av de lipofila substanserna floteras ur processvattnet. Den effektiva bioraffineringen av de lipofila substanserna innebär inte bara en rening av processvattnet utan underlättar även för att selektivt kunna ”skörda” kvarvarande hemicellulosa av hög renhet.

I den andra delen av avhandlingen så användes omodifierad cellulosa (sulfitmassa) upplöst i LiOH/urea för att tillverka sfäriska nanokompositpartiklar (Paper III), pH-responsiva nanokomposita ii filmer (Paper IV) och kemiskt tvärbundna cellulosahydrogeler (Paper V). Nanokomposita partiklar bestående av cellulosa-kitosan preparerades på tre olika sätt: genom att droppa alkalisk cellulosalösning ned i kitosan upplöst i utspädd ättiksyra, samt genom att emulsifiera en blandning av alkalisk cellulosa-kitosanlösning till en vatten-i-olja emulsion med och utan tillsatt kemisk tvärbindare. Sfäriska cellulosa-kitosan nanokompositpartiklar i storleksområdet millimeter till mikrometer kunde på detta vis framställas. Det kunde konstateras att några av egenskaperna för de sfäriska partiklarna, till exempel morfologin och storleksfördelningen, kunde kontrolleras genom de olika framställningsvägarna. Även nanokomposita cellulosakitosanfilmer med pH-responsiv svällning och långsam frisättning av kitosan tillverkades genom att först lösa upp biopolymererna i LiOH/urea. Filmer som innehöll 75 % kitosan uppvisade högst svällbarhet; 1500%, och samtidigt högst grad av frisättning av kitosan; 55 %, under 12 timmar vid pH 3. I en annan studie så tillverkades robusta hydrogeler, några med mycket hög vattenupptagande förmåga, av upplöst cellulosa genom olika grad av tvärbindning med metylenbisakrylamid (MBA). Den mest påfallande effekten åstadkoms för en hydrogel med ett molärt blandningsförhållandet [MBA]/[glukos] på 1,05 som fick reagera vid 60 °C under 30 minuter. Här kunde en svällningskapacitet av ca. 220 g H2O/ g torrvikt uppvisas. Att använda cellulosa upplöst i LiOH/urea följt av tvärbindning med MBA visar möjligheterna för en innovativ och snabb procedur att enkelt framställa tvärbundna cellulosahydrogeler med hög molekylvikt och extremt bra vattenupptagningsförmåga.


Projects

No matching items found.


Keywords

No matching items found.


Documents

No matching items found.