Journal article review

Physiological aspects of the subcellular localization of glycogen in skeletal muscle

Authors/Editors

No matching items found.



Research Areas

No matching items found.


Publication Details

Author list: Ørtenblad, Niels

Publication year: 2013

Start page: 91

End page: 99

Number of pages: 9

ISSN: 1715-5312

DOI: http://dx.doi.org/10.1139/apnm-2012-0184

View additional information: View in Web of Science


Abstract

Glucose is stored in skeletal muscle fibers as glycogen, a branched-chain polymer observed in electron microscopy images as roughly spherical particles (known asß-particles of 10-45 nm in diameter),which are distributed in distinct localizations within the myofibers and are physically associated with metabolic and scaffolding proteins. Although the subcellular localization of glycogen has been recognized for more than 40 years, the physiological role of the distinct localizations has received sparse attention. Recently, however, studies involving stereological, unbiased, quantitative methods have investigated the role and regulation of these distinct deposits of glycogen. In this report, we review the available literature regarding the subcellular localization of glycogen in skeletal muscle as investigated by electron microscopy studies and put this into perspective in terms of the architectural, topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility and fatigability. Based on all these data, the available literature strongly indicates that the subcellular localization of glycogen has to be taken into consideration to fully understand and appreciate the role and regulation of glycogen metabolism and signaling in skeletal muscle. A full understanding of these phenomena may prove vital in elucidating the mechanisms that integrate basic cellular events with changing glycogen content.


Projects

No matching items found.


Keywords

No matching items found.


Documents

No matching items found.